
Prof. Dr. Jan Borchers
Media Computing Group
RWTH Aachen University

Winter Semester ’20/’21

https://hci.rwth-aachen.de/dis

The Ten Golden Rules of Interface Design, Responsiveness

Designing Interactive Systems I

https://hci.rwth-aachen.de/dis

Review
• Key objective of controlled experiments?

• What effects may occur?

• What can you do to minimize those effects?

• Types of validity?

• What is the Keystroke-Level GOMS model?

• Novice vs. expert users?

• Information efficiency?

• Character efficiency?

Prof. Dr. Jan Borchers: Designing Interactive Systems I • WS 2020/212

Prof. Dr. Jan Borchers: Designing Interactive Systems I • WS 2020/213

Ten Golden Rules of
Interface Design

Ten Golden Rules of Interface Design

1. Keep the interface simple!

2. Speak the user’s language!

3. Be consistent and predictable!

4. Provide feedback & be responsive!

5. Minimize memory load!

6. Avoid errors, help to recover, offer undo!

7. Design clear exits and closed dialogs!

8. Include help and documentation!

9. Address diverse user needs!

10. Hire a graphic designer!

Prof. Dr. Jan Borchers: Designing Interactive Systems I • WS 2020/214

1. Keep the Interface Simple!
• Most important rule

• First design is often too complex & awkward

• Avoid feature creep

• Some consumers will ask for more and more features

• But usability must not suffer

• Experience: 80% of users use only 20% of features (e.g., Word)

• Honorable goal would be: Next version will have no new features, just be
easier to use

• If pressed, move feature sets out to sub-dialogs

Prof. Dr. Jan Borchers: Designing Interactive Systems I • WS 2020/215

Prof. Dr. Jan Borchers: Designing Interactive Systems I • WS 2020/216

Example for Feature Creep: Blu-Ray Player

Prof. Dr. Jan Borchers: Designing Interactive Systems I • WS 2020/217

https://www.samsung.com/de/video-players/uhd-blu-ray-
player/ultra-hd-blu-ray-player-black-ubd-m9500-zg/

Prof. Dr. Jan Borchers: Designing Interactive Systems I • WS 2020/218

Example: Simple Alarm Clock

9

2. Speak the User’s Language!
• Take words and concepts from the application domain, not technology

• Determine terminology during initial user interviews and task analysis

• Example: “File” means less to an architect who is new to computers than
“drawing”

• Applies to words for objects, but also work processes and tasks (e.g., “order”)

Prof. Dr. Jan Borchers: Designing Interactive Systems I • WS 2020/2110

Example: Samsung Tablet

Prof. Dr. Jan Borchers: Designing Interactive Systems I • WS 2020/2112

Example: Apple Music
• Talks about “music”, “songs”, “video”, “movies”, “playlists”, not “files”

• In menus, dialogs, and online help (⇒Rule 3: Consistency)

• Exceptions: E.g., “File” menu

• Conflict with cross-application consistency

Prof. Dr. Jan Borchers: Designing Interactive Systems I • WS 2020/2113

3. Be Consistent and Predictable!
• Consistency is needed across many levels:

• Similar commands for similar situations

• Consistent terminology in menus, dialogs, help pages, etc.

• Consistent fonts, layout, color coding, upper/lower cases, etc.
throughout the system

• Only few obvious exceptions

• No clear-text echo when entering passwords

• Extra security check before erasing files, etc.

Prof. Dr. Jan Borchers: Designing Interactive Systems I • WS 2020/2114

Example: Xerox Star Command Buttons
• Same (physical) buttons to copy a file,

a word in a text editor, an object in a
graphics program, etc.

• Still true today (Cut/Copy/Paste)

Prof. Dr. Jan Borchers: Designing Interactive Systems I • WS 2020/2115

Consistency through Vertical Design

Prof. Dr. Jan Borchers: Designing Interactive Systems I • WS 2020/2116

Predictability
• Follow the “Principle of Least Surprise”

• System should always react so that it minimizes the user’s surprise (and
therefore, confusion and irritation)

• Don’t do unexpected things

• …and don’t make actions unexpectedly difficult (“…how do I print this  
in duplex?”)

• Users (especially experts) like to be “in control”

• They initiate actions, the system responds

Prof. Dr. Jan Borchers: Designing Interactive Systems I • WS 2020/2117

Your battery is fully charged!

Principle of Least Surprise

Prof. Dr. Jan Borchers: Designing Interactive Systems I • WS 2020/2118

PowerPoint Office Assistant

Prof. Dr. Jan Borchers: Designing Interactive Systems I • WS 2020/2119

20

Timeouts are Evil!

21

22

4. Provide Feedback & Be Responsive!
• Recall the Seven Stages of Action

• Complete & continuous feedback bridges Gulf of Evaluation

• Each user action requires some feedback

• Subtle for small/short/frequent actions (e.g., key press, menu selection)

• More noticeable for main/long/infrequent actions (e.g., saving or deleting files)

• Icons in GUIs simplify visualizing object state and actions: direct manipulation

• Nothing is more frustrating for the user than “Where am I?” or “What is it doing
now?”

Prof. Dr. Jan Borchers: Designing Interactive Systems I • WS 2020/2123

Example: Windows 2000 Progress Dialog for Copying Files
• What’s wrong with this picture?

Prof. Dr. Jan Borchers: Designing Interactive Systems I • WS 2020/2124

Example: Menu Selection
• What happens when you select a menu item?

Prof. Dr. Jan Borchers: Designing Interactive Systems I • WS 2020/2125

macOS
Catalina Menu

26

GNOME

27

Haptic Feedback

Prof. Dr. Jan Borchers: Designing Interactive Systems I • WS 2020/2128

5. Minimize Memory Load!
• Short-term memory: limited capacity (ca. 4 ± 1 chunks)

• Avoid situations where prior dialog information has to be reproduced from
memory

• E.g., user should not have to type anything in twice.

• Display information so it’s easy to parse (Gestalt laws)

• Provide obvious access to help pages for codes, abbreviations, etc.

• It’s easier to minimize memory load with GUIs than command line interfaces

• “Read & Select” instead of “Remember & Type”

Prof. Dr. Jan Borchers: Designing Interactive Systems I • WS 2020/2129

Keyboard Viewer

Prof. Dr. Jan Borchers: Designing Interactive Systems I • WS 2020/2130

Keyboard Shortcut List

Prof. Dr. Jan Borchers: Designing Interactive Systems I • WS 2020/2131

6. Avoid Errors, Help to Recover!
• Errors lead to stress

• So offer simple, constructive, concrete, helpful, and comfortable instructions to
recover

• System state should not change through wrong input, or should be easy to
restore

• Best: Design system so mistakes cannot be made in the first place. Examples:

• Selection instead of (mis)typing

• Cannot type letters in numerical data fields

• Arcade game machines have virtually no error messages!

• Automatic correction of illegal characters in file names

Prof. Dr. Jan Borchers: Designing Interactive Systems I • WS 2020/2132

Prof. Dr. Jan Borchers: Designing Interactive Systems I • WS 2020/2133

6. Avoid Errors, Help to Recover!
• Offer undo

• As many actions as possible should be reversible

• Lowers anxiety because users know errors are correctable

• Encourages users to try out new functions

• Ideal: multiple undo, and at multiple levels

Prof. Dr. Jan Borchers: Designing Interactive Systems I • WS 2020/2134

35

7. Design Clear Exits & Closed Dialogs!
• Three most common questions of users during a dialog:

• Where am I?

• What can I do here?

• How do I get back to where I was?

• Clear exits (“Back”, “Quit”) help with Question 3

• Closed dialogs:

• Provide feeling of having completed a step

• Allows user to relax, “take a breath”, frees the mind for the next step

Prof. Dr. Jan Borchers: Designing Interactive Systems I • WS 2020/2136

37

38

39

Hello, Jan Borchers

40

41

 Jan

42

43

44

45

8. Include Help and Documentation!
• Hierarchy of help systems, with increasing breadth and  

decreasing ease-of-access:

• Dynamic Descriptors, such as Tooltips (but let users disable them!)

• Online tutorials and references

• Printed documentation, but

• More active help can be useful:

• Assistants and Wizards

• But danger: system takes over initiative, which breaks Rule 3 (predictability)

Prof. Dr. Jan Borchers: Designing Interactive Systems I • WS 2020/2146

users don’t read manuals!

9. Address Diverse User Needs!
• Novices want more explanations

• Frequent users want less fussy and faster interaction

• They value (configurable) keyboard shortcuts, macro recording,
programmability, and quick responses without unnecessary feedback (for them)

• Different age ranges have different interface expectations

• Technology affinity (“enjoying to play with gadgets”) varies widely among people

• But conflict: If in doubt, Rule 1 (“Keep the interface simple”) is more important!
May have to focus on a user group

Prof. Dr. Jan Borchers: Designing Interactive Systems I • WS 2020/2147

Example: PostBrainstorm
• New users get popup menu

• Experienced users remember the gestures to
select frequent commands from the menu

• The menu does not even pop up when the
gesture is done rapidly

• But: If you ever forget the gesture, just wait for a
fraction of a second, and you can revert to using
the popup menu

• The result: Fluid and reversible transition from
menu selection to gesture commands

Prof. Dr. Jan Borchers: Designing Interactive Systems I • WS 2020/2148

a b c d

Figure 1: To zoom, the user moves the pen from the rest area into the Items... octant (a). Submenus (Highlight, Move,
Zoom) appear and the first level menu items not selected are grayed out (b). Entering the Zoom octant submenu, then
moving back to the rest area dismisses the root level menu and brings up the zoom menu with the current zoom value
(75%) displayed in the center (c). A new zoom value of 100% is selected by moving into the octant for the desired value
and back to the center at which point the zoom is applied (d). Several zoom values can be tried out during the same
interaction since the zoom menu stays in place until the pen is lifted. The dashed circles added to the illustration (a) and
(b) show the transition boundaries for leaving and entering the rest area (see text). For explanatory purposes, the figures
in this paper explicitly show the pen track and the underlying selected object is shown only in Figure 3. In normal use, the
pen track is not displayed and the selected object is visible behind the transparent menu.

a b c d

Figure 2: After selecting Item...→Zoom from the root menu (a), the user selects Numeric to enter the new zoom value
as a sequence of digits (b). The zoom menu is dismissed and the Quikwriting system is brought up (c) so that she can
enter the zoom value (d).

tiple items to a menu system as well. Cirrin [9] is a soft key-
board in which letters are arranged at the circumference of a
circle. Like Quikwriting it provides a way to enter succes-
sive letters of a word in a continuous stroke without having
to lift the pen. After an initial training period, words can be
remembered as a kind of shorthand. The initial layout of 26
primary entries without hierarchy makes it less convenient to
extend to a menu system.

THE FLOWMENU
The FlowMenu is presented as a radial menu with 8 octants
and a central rest area (figure 1). Starting from the rest area,
the user selects a top-level menu item by entering the corre-
sponding octant. As she does, sub-menus for this menu ap-
pear laid out further away from the center while non-selected
top-level items are grayed out. Moving the pen to the sub-
menu octant and reentering the rest area from this octant will
trigger menu selection. The user can abort the interaction by
removing the pen from the surface before reentering the rest
area. With a simple FlowMenu, the user can access 8 top-

level menu items, each with 8 submenu items. However since
each selection of a menu ends with the cursor at the cen-
ter of the menu, successive menu interactions can be merged
together to build deeper hierarchies and arbitrarily long se-
quences of interactions. Figure 1 show an example where
after selecting the zoom submenu from the system menu, the
system menu is removed and the zoom menu is brought up
to let the user adjust the zoom.

Merging menu selection and parameter entry is easy because
commands are segmented by the return of the cursor to the
rest area. To let the user enter an alphanumerical value af-
ter a menu selection we remove the menu from the screen
and present in its place a Quikwriting pad. Figure 2 shows
such an interaction. The selection Item...→Zoom→ Nu-
meric brings up the Quikwriting system to let the user enter
a numeric zoom value. The user can learn a composite se-
quence of commands and text as the superposition of simple
loop gestures such as shown in figure 2d. The system can
also be used in a way similar to control menus by letting the

[F. Guimbretière, Stanford, UIST 2000]

49

10. Hire a Graphic Designer!

Prof. Dr. Jan Borchers: Designing Interactive Systems I • WS 2020/2150

51

Prof. Dr. Jan Borchers: Designing Interactive Systems I • WS 2020/2152

Ten Golden Rules of Interface Design

1. Keep the interface simple!

2. Speak the user’s language!

3. Be consistent and predictable!

4. Provide feedback & be responsive!

5. Minimize memory load!

6. Avoid errors, help to recover, offer undo!

7. Design clear exits and closed dialogs!

8. Include help and documentation!

9. Address diverse user needs!

10. Hire a graphic designer!

Prof. Dr. Jan Borchers: Designing Interactive Systems I • WS 2020/2153

Prof. Dr. Jan Borchers: Designing Interactive Systems I • WS 2020/2154

Responsiveness and
Performance

Responsiveness
• See also: Jeff Johnson, GUI Bloopers 2.0

• Key usability problem of interactive systems

• Bad responsiveness opens Gulf of Evaluation

• Examples for bad responsiveness:

• A screen pointer that doesn’t keep up

• Delayed response to button-clicks

• Sliders and scrollbars that lag

• Applications that go “dead” during disk operations

• Multiple screen repaints

Prof. Dr. Jan Borchers: Designing Interactive Systems I • WS 2020/2155

Reasons for Poor Responsiveness
• Importance not widely known

• UI designers think of other things
first

• UI designers rarely specify
responsiveness

• Programmers tend to equate it
with performance

• This kind of tuning is always difficult

• “We’ll get it in the next release,”
and so on

• Developers treat human input like
machine input

• Simple, naïve implementations

• GUI tools and platforms are
inadequate

• Limitations of online apps (which
everybody knows about)

Prof. Dr. Jan Borchers: Designing Interactive Systems I • WS 2020/2156

Example: Scrollbar
• Does text move as you scroll (good) or after you let go (bad)?

• If designer doesn’t specify, developer will make a decision

• That will usually be the technically simplest

• Since developers are not trained in user interface theory and concepts

• Just as UI designers are generally not trained in implementing large software
products in C++

Prof. Dr. Jan Borchers: Designing Interactive Systems I • WS 2020/2157

Some Eternal Facts
• Responsiveness ≠ performance!

• Processing resources will always be limited

• We still look at hourglass as much as 15 years ago

• UIs are real-time systems with deadlines based on human cognition

• Software does not need to do everything instantly, or in a given order, or even
at all

Prof. Dr. Jan Borchers: Designing Interactive Systems I • WS 2020/2158

Three Human Deadlines
• 0.1 seconds

• Perception of cause and effect (recall
CMN model)

• E.g., delay between moving mouse and
pointer following, or between mouse
click and inverting button

• 1 second

• Turn-taking in conversation, minimum
reaction time for unexpected events

• E.g., you have 1s max to show progress
indicator, open window, or finish system-
initiated operations (like auto-save)

• 10 seconds

• Typical human attention span

• Max. time for one step of a task

• E.g., entering a check into a banking
program, or completing one step of a
wizard

• Max. time to finish giving input for a task

• E.g., from selecting “Print” menu entry
to sending off the print job

Prof. Dr. Jan Borchers: Designing Interactive Systems I • WS 2020/2159

Design Techniques for Responsiveness
• Meet human-time deadlines

• Rely on the three deadlines and recognize the differences

• Acknowledge user input immediately, and display busy and progress indicators

• Use them as frequently as you can, you never know when it will take longer

• Example “Progress bar”:

• Make it real, show total items remaining, overall progress, and estimated total
time remaining

• Only useful if it advances roughly linearly! (no hanging at 99% please)

• Estimated time should always go down, never up

• “Less than a minute” is better than “47 seconds” (why?)

Prof. Dr. Jan Borchers: Designing Interactive Systems I • WS 2020/2160

Design Techniques for Responsiveness
• Display important information first

• Example: How to draw a clock

• Work in parallel

• Delegate work that isn’t time-critical to background processes

• Work ahead by preparing likely requests

• Optimize Queueing

• Create a logical order by looking at all  
pieces first, then prioritize

Prof. Dr. Jan Borchers: Designing Interactive Systems I • WS 2020/2161

Design Techniques for Responsiveness
• Manage time dynamically

• Adjust the strategy if not keeping up

• Decrease quality or quantity to keep up

• Example: WordStar (1978)

• Ran on a 1 MHz computer, killed by IBM PC

• Written by an amateur, but he accommodated  
by making the system responsive

• WordStar never dropped characters typed

• Characters typed were always on screen instantly

• Instead stopped updating other areas of the screen

Prof. Dr. Jan Borchers: Designing Interactive Systems I • WS 2020/2162

Design Techniques for Responsiveness
• Test under different conditions

• Test under heavy loads

• Test on slower systems, like
your customers have

• Test over slower net
connections

Prof. Dr. Jan Borchers: Designing Interactive Systems I • WS 2020/2163

E

